
LOWER BOUND ON LATENCY FOR VLIW ASIP DATAPATHS �

Margarida F. Jacome and Gustavo de Veciana
Department of Electrical and Computer Engineering

University of Texas, Austin, TX 78712
Tel: ����� �������� Fax: ����� ������	�

fjacome,gustavog@ece.utexas.edu

Accepted to ICCAD 1999

Abstract

Traditional lower bound estimates on latency for dataflow graphs
assume no data transfer delays. While such approaches can gen-
erate tight lower bounds for datapaths with a centralized register
file, the results may be uninformative for datapaths with distributed
register file structures that are characteristic of VLIW ASIPs. In
this paper we propose a latency bound that accounts for such data
transfer delays. The novelty of our approach lies in constructing
the “window dependency graph” and bounds associated with the
problem which capture delay penalties due to operation serializa-
tion and/or data moves among distributed register files. Through a
set of benchmark examples, we show that the bound is competitive
with state-of-the-art approaches. Moreover, our experiments show
that the approach can aid an iterative improvement algorithm in de-
termining good functional unit assignments – a key step in code
generation for VLIW ASIPs.

� Introduction

Lower bound estimates on latency for Data Flow Graphs (DFGs)
executing on datapaths have been extensively investigated, see e.g.,
[11, 6, 10]. High-level synthesis tools have traditionally used these
lower bound estimates to identify and prune inferior designs during
design space exploration. While some of the bounding approaches
give tight bounds when applied to datapaths with a centralized reg-
ister file, they may be uninformative when applied to datapaths
with distributed register file structures, see e.g., Fig.1. Since the
datapaths of Very Large Instruction Word (VLIW) Application-
Specific Instruction-Set Processors (ASIPs) typically exhibit such
distributed storage structures [8, 7], there is a need to develop bounds
that can be informative in this context. These bounds can in turn
provide guidance during code generation for this important class
of embedded processors – in particular, as discussed in the sequel,
during the functional unit binding (assignment) phase of code gen-
eration.

In this paper, we propose an approach to lower bounding the
execution latency of a DFG, for a given binding of the DFG to
a datapath, which considers the impact of distributed register file
structures on latency. In particular, we will focus on DFGs corre-
sponding to single basic blocks within a loop body, since these are
typically the time critical segments for the embedded applications
and are likely to benefit the most from using VLIW ASIPs [8, 7].

In our DFG examples, we will use the convention of naming
activities that require multiplication operations by m, ALU opera-
tions by a and a bus use by b, see e.g., Figs.1 and 2. The key issue
underlying our work is as follows: when two activities share a data

�This work is supported by a National Science Foundation NSF CAREER Award
MIP-9624321 and by Grant ATP-003658-088 of the Texas Higher Education Coordi-
nating Board.

object, as m1 and a1 share r1�i� in Fig.1, it is of interest to bind them
to functional resources that share common register files – e.g., mul-
tiplier M1 and ALU A1 share register file RF1. By doing so, one
can in principle avoid delays incurred in moving the result of m1 to
a new register file before a1 can execute. The primary contribution
of this paper is the development of a latency bound which directly
accounts for such data transfer delays. Since for datapaths with dis-
tributed register files the delays associated with such transfers can
be significant, the availability of tight lower bounds is critical in the
context of VLIW ASIPs.

Figure 1: Segment of DFG and VLIW ASIP datapath.

In order to avoid delays due to data transfers, one might seek a
binding of DFG activities to datapath functional resources, in which
shared (result/operand) data objects reside in the same register files.
However, in doing so, one may bind two activities, that could have
been executed concurrently, to the same resource resulting in a se-
rialization of the operations. For example, to avoid data moves
between register files, one may bind both m1 and m2 to M1, so that
their results are placed in RF1 from which a1 draws its inputs. By
doing so, a serialization penalty will be incurred since m1 and m2
can no longer be executed concurrently. Thus, one can view the
binding task as a tradeoff between 1) delays incurred from having
to move data objects across distributed register files, and 2) delays
incurred from needlessly serializing operations. Fig.2 exhibits two
bindings for our example – on the left a binding attempting to avoid
moves and, on the right, a binding avoiding serialization. Note that,
in this simple example, both bindings lead to the same latency, but
in general this will not be the case.

Figure 2: Serialization versus data transfers.

A second contribution of this paper is to develop a model, the

1

window dependency graph, capable of capturing chains of increased
execution delays caused by such operation serializations. This model
proves to be useful in assisting incremental changes to bindings
which tradeoff the delays resulting from data moves and opera-
tion serialization. We argue that the proposed window dependency
graph can be of use during code generation for VLIW ASIPs.

The paper is structured as follows. Section 2 formally defines
the problem to be addressed. Section 3 presents the proposed lower-
bound on execution latency. Section 4 discusses how the informa-
tion provided by the proposed lower bounding method may be used
in exploring tradeoffs during code generation. Section 5 discusses
related work and presents benchmark examples. Conclusions are
given in x6.

� Data�ow graphs� datapaths and bindings

A DFG will be modeled by a DAG, G�A�E�, where the nodes A
represent activities, i.e., operations to be carried out on datapath
resources, e.g., adds and moves, and the edges E � A�A repre-
sent data objects that are “produced” and “consumed” by activities
during the flow of execution. Without loss of generality, we as-
sume that an activity can consume at most two data objects, i.e.,
the in-degree of any node is at most 2. We focus on code seg-
ments corresponding to a single basic block within a loop body,
thus the DFG shown in Fig.1 includes data object labels with iter-
ation indices, e.g., r1�i��r2�i�� As discussed below, the DFG model
will also include move (i.e., data transfer) activities, required for a
given binding of functional activities to datapath resources.

Let R denote the set of datapath resources. These may include
ALUs, multipliers and other functional units, as well as buses. For
each resource r � R, we let c�r� � Z� denote the capacity of that
resource, e.g., an ALU would have a capacity of 1, signifying that
it can perform 1 operation per step, whereas a bus resource might
have a capacity 2, signifying that it can perform 2 concurrent data
transfers.1 For simplicity we will assume that all activities take a
unit step to execute, but the approach can be extended to multicy-
cle and/or pipelined functional units. The datapath is also speci-
fied in terms of its (distributed) register files, their connectivity to
functional resources and, for simplicity, a shared bus with a given
capacity, see e.g., Fig.1.

We assume that functional activities of the DFG have been bound
to datapath resources, that is, each activity a � A is bound to a
resource β�a� � R which is capable of carrying out that activity.
Given such a binding and the register file connectivity, we iden-
tify data object moves that will need to take place between oper-
ations, and explicitly include nodes in the DFG corresponding to
such moves. Move operations are bound to the datapath’s bus. For
example, if β�m1� � M1 and β�m2� � M2 then an additional node
would be inserted between m2 and a2 to capture the delay to move
the result of m2 in register file RF2 to register file RF1, see Figs.1
and 2.

� Lower bound on latency

Recall that our first goal is to determine a lower bound on the ex-
ecution latency for a given binding of a DFG to a datapath. The
second goal is to generate information that can assist tradeoff ex-
ploration during functional unit assignment (binding). We will do
this by first determining a global lower bound, L, on the latency
and then, generating a window dependency graph, that will permit

1In general, one might consider binding activities to clusters of functional units
sharing a common register file. In this case, one would define the capacity of a cluster
to perform a particular type of operation, which would depend on the number of func-
tional units capable of executing the operation in the cluster. This is in fact the manner
in which the binding is specified but, to simplify notation, in this paper we will specify
bindings directly to resources.

assessing the additional delays on activities that are incurred due to
resource and/or precedence constraints.

��� Global lower bound L

Various methods are available to determine global lower bounds on
latency of the schedule, e.g., [11]. For concreteness, we will use
the maximum of two simple bounds, however more sophisticated
approaches can be used. We first perform an, as soon as possible,
ASAP scheduling of the DFG to determine the minimum number
of steps that would be required. Next we sum the total number
of moves that were explicitly introduced between activities in the
DFG with the total number of primary inputs/outputs that are re-
quired, and divide by the bus capacity to find the minimum number
of steps that would be required to perform the required data trans-
fers. The global lower bound L is given by the maximum of these
two numbers.

��� Windows

We shall construct three types of windows associated with the prob-
lem at hand, individual, basic, and aggregated windows. A win-
dow, indexed by i, is specified by a four-tuple

w�i� � �s�i�� f �i��r�i��Ai�

where s�i� and f �i� are the start and finish steps for the window,
r�i� is a datapath resource associated with the window, and Ai is
a set of activities bound to r�i� which ideally would be executed
within the scheduling range �s�i�� f �i���

To establish approximate scheduling ranges in which activi-
ties might be scheduled we use an ASAP scheduling of the DFG
and, given the global lower bound L, perform an as late as pos-
sible (ALAP) scheduling of the DFG. Let the activities A be in-
dexed k � 1�2� � � � jAj, where jAj denotes the cardinality of set A.
For each activity ak � A, we define an individual window wI�k� �
�sI�k�� f I�k��β�ak��fakg� where sI�k�� f I�k� denote the earliest and
latest possible steps at which the activity could be executed, based
on the ASAP and ALAP schedules, and β�ak� is the resource to
which ak is bound. Note that since the scheduling ranges associated
with these windows were derived based on ASAP/ALAP schedules
that disregard resource constraints, a schedule in with each activity
lies within its individual scheduling range may not be feasible.

Individual windows provide an activity-centric point of view
on scheduling constraints. However, there may be multiple activ-
ities bound to the same resource which share the same schedul-
ing range. Given the set of individual windows, we shall construct
a reduced set of j � 1� � � �nB basic windows denoted by wB� j� �
�sB� j�� f B� j��rB� j��AB

j � where AB
j is the largest set of activities

bound to rB� j� with the same individual scheduling range
�sB� j�� f B� j��. A basic window thus groups activities sharing a
common resource and the same scheduling range.

Given the collection of basic windows, we then generate a col-
lection of i � 1� � � �nA aggregated windows, denoted by w�i� �
�s�i�� f �i��r�i��Ai��

2 The set of aggregated windows includes all
the basic windows as well as mergings of one or more basic win-
dows, associated with activities bound to the same datapath re-
source. Only windows with scheduling ranges that abut or overlap
with each other can be merged and only those with a maximal num-
ber of activities for the given scheduling range are kept. Thus each
aggregate window corresponds to a maximal number of activities
associated with a given scheduling range to be executed on a com-
mon resource. Aggregated windows, provide a resource/scheduling

2Note that to keep the notation simple we suppress the superscript A that would
indicate that these are aggregate windows versus individual I or basic B windows.

2

range centric view on the problem, by collectively capturing the ag-
gregate resource demands on various ranges of steps.

Figure 3: Example of individual, basic and aggregated window
construction.

Fig.3 exhibits a DFG including only additions and multiplica-
tions, and the various types of windows that would be generated.
For simplicity we have not labeled windows and activities. Note for
example, that one of the addition activities can be scheduled at the
earliest on the first step or at the latest on the second step, thus has
an individual window with a scheduling range of two steps. Also
note that the multiplication activities on the last two steps have the
same individual ranges, and hence are collapsed into single basic
windows associated with two activities. This better captures the re-
source demands on these last two steps. Finally, windows that abut
or overlap with each other generate new merged aggregate win-
dows. Thus the basic window associated with the activity having
a range of two steps is merged with the smaller fully overlapping
individual window of the same type. Also various larger windows
containing only multiplication activities are generated, capturing
the high resource requirements over larger ranges of scheduling
steps. A complexity analysis for the window generation process
can be found in x3.7.

��� Local delays � Resource constrained scheduling

Each aggregated window i corresponds to a set of activities Ai to
be executed on resource r�i� within a range of scheduling steps
�s�i�� f �i��� In the best case, if there are no constraints on the ac-
tivities in a window, they can be executed in only 1 step, e.g., step
s�i�� However, usually, due to resource/precedence constraints, the
activities associated with the window require several steps to exe-
cute, and in some cases might even exceed the upper limit f �i�on
their scheduling range. To capture this effect we shall compute a
lower bound on the additional number of steps, i.e., beyond the 1
step case considered above, that any feasible resource constrained
schedule will require to execute the activities in Ai. We later define
this bound as the local delay, λ�i�, of the window. The bound is
obtained by considering the activities Ai in isolation i.e., only con-
sidering direct precedence constraints among them and the capacity
of the resource to which they are bound.

We develop our bound for an arbitrary set of activities, A��A in
the graph G�A�E� which are to be executed on the same resource r -
windows are thus a special case. Let G�A��E �� denote the subgraph
of G�A�E� which includes the activities A� and all edges E� � E
between activities in A�. This induced graph captures only direct
precedence constraints among activities in A�, optimistically drop-
ping all others. Next perform an ASAP scheduling for the activities
in the subgraph. Let l � 1� � � �m denote the steps of this schedule,
nl denote the number of activities scheduled on step l, and m be
the last non-empty step. Based on the above ASAP schedule, at
best, the activities in A� can be completed in m steps. However,
since these activities are to be executed on resource r with capacity

c�r�, no more than c�r� activities may be scheduled per step, i.e.,
nl � c�r�� The bound is based on the following observation: a fea-
sible resource constrained schedule may not execute any activity
prior to its execution step in the ASAP schedule for the subgraph
and may schedule at most c�r� activities per step. Alternatively, we
make the optimistic assumption that once an activity on step l of
the subgraph’s ASAP schedule completes execution, any activity
on step l � 1 can be scheduled for execution. By relaxing con-
straints among the activities in A� and dropping constraints among
A� and the rest of the DAG we can obtain the following local bound
on the relative number of steps needed to execute the activities in
A�.

Lemma 3.1 Suppose A� � A is a nonempty set of activities bound
to a resource r with capacity c�r� and let nl denote the number
of activities in the steps l � 1� � � � �m of the ASAP schedule for the
subgraph G�A��E �� defined above. Define bound�A��r� by

x0 � 0�

xl�1 � maxfnl � xl � c�r��0g� l � 1� � � �m�

bound�A��r� � d
xm�1

c�r�
e�m�1�

Then bound�A��r� is a lower bound on the number of steps, beyond
the first one, that any feasible resource constrained schedule would
require to complete execution of the activities in A��

The proof of this lemma is straightforward and included in the
appendix. The iteration which defines the bound corresponds to
greedily packing activities, consistent with not beginning execution
prior to their associated subgraph ASAP step, and not exceeding the
resource’s capacity.

With this result in hand we define the local delay for window i
by λ�i� � bound�Ai�r�i��. Thus the last activity in window i must
be executed on or after step s�i��λ�i�� This must be the case since
no activity in Ai can begin execution prior to s�i� and according to
Lemma 3.1 at least λ�i� additional steps are required. If this ex-
ceeds f �i� then the precedence/resource constraints will force ac-
tivities to be executed outside the window’s scheduling range, i.e.,
incur excess delays, providing valuable localized information on
where a particular binding may be leading to scheduling delays.

��� Propagated delays � Key Lemma

Local delays capture delays incurred due to precedence/resource
constraints within a given window. Due to dependencies among ac-
tivities in different windows, additional delays may be propagated
from one window to another. Without loss of generality consider
two aggregate windows, indexed by 1 and 2. We shall define de-
pendencies among windows as follows.

Definition 3.1 We say that Window 2 depends on Window 1 if
among Window 2’s activities, A2, there are activities with direct
data dependencies from activities A1 in Window 1. More specif-
ically let P1�2 �C1�2 :� �A1 �A2��E be the set of edges on the
DFG from activities in Window 1 to activities in Window 2, thus
Window 2 depends on Window 1 if P1�2�C1�2 �� /0�

We call P1�2 and C1�2 the set of producer and consumer activities
associated with this dependency relation. Note that dependency
is a directed relationship, i.e., in the above definition, Window 2
depends on Window 1. In the sequel we will use the following no-
tation Pa :� fb � A1j�b�a� � Eg to denote producers in Window 1
for an activity a and Cb :� fa� A2j�b�a�� Eg to denote consumers
in Window 2 for activity b� Also we define L2 as the set of activities
on first step of ASAP schedule for subgraph G�A2�E �� induced by
the activities in Window 2.

3

We let δ�i� denote a lower bound on the additional delay prop-
agated to an aggregate window w�i� from other windows. Thus,
for a given δ�i�, we can guarantee that any feasible schedule for
the DFG will have an activity in Ai scheduled on or after step
s�i��λ�i��δ�i�, i.e., after the first scheduling step for the window
plus its local and propagated delays. Our goal is to systematically
find such incremental bounds, showing where combinations of re-
source and precedence constraints are likely to lead to propagation
of delays across windows, which in turn will increase the latency
of the schedule. The algorithm proposed below is based on recog-
nizing two ways in which the activities in Window 1 can further
delay the last activity in Window 2. The first is that there is a non-
empty set of activities in Window 2 that can only be scheduled after
completion of the last activity in P1�2� The second is that depending
on the minimum number of producers required by the activities in
L2 of Window 2, the start time for execution of the activities A2
may need to be delayed. For a detailed discussion of the proposed
algorithm see the proof of Lemma 3.2 in the appendix. Below we
present a concrete example and discussion that should clarify the
general idea.

propagated-delay�1 � 2�
initialize P1�2�Pa�Cb and L2
if (P1�2 � A1) /* compute bound on last producer step */

last-producer-step � s�1��λ�1��δ�1�;
else start-step � minakfsI�k�jak � P1�2g;

last-producer-step � start-step �bound�P1�2�r�1��;
/* compute bound on last consumer step */

if (c�r�1�� � 1 and �a � L2� jPaj� 2)
last-consumer-step � maxfs�1��2�s�2�g�λ�2�;

else last-consumer-step � s�2��λ�2��δ�2�;
/* take the worst of the two */

num-consumers-for-last-producer � minbfjCbj j b � P1�2g;
delay � dnum-consumers-for-last-producer�c�r�2��e;
last-consumer-step �

maxflast-producer-step�delay� last-consumer-stepg;
/* compute pairwise propagated delay for Window 2 from 1 */

∆�1�2� � last-consumer-step� �s�2��λ�2��;
/* update worst case propagated delay for Window 2 */

δ�2� � maxfδ�2��∆�1�2�g;

Lemma 3.2 Given two aggregate windows, Windows 1 and 2, with
associated local and current worst case propagated delays λ�1��δ�1�
and λ�2��δ�2� respectively, such that Window 2 depends on Win-
dow 1, then the algorithm propagated-delay above computes a
(possibly tighter) updated worst case propagated delay δ�2� for
Window 2, and a pairwise propagated delay ∆�1�2�, i.e., the prop-
agated delay resulting from Window 1.

Fig.4 shows two windows, 1 and 2, such that Window 2 de-
pends on Window 1. For this example, the dependency between
two windows can be shown to further delay the execution of activ-
ities in Window 2 and thus increases the lower bound, δ�2�, on the
number of additional steps required to execute the activities A2 in
Window 2. Based on their local and current worst case propagated
delays, our algorithm computes a new propagated delay δ�2� for
Window 2.3 The example in the Fig.4 captures one of the cases
considered in our algorithm. In particular, that in which all of the
activities in A2 that could have been scheduled on step s�2� (i.e., ac-
tivity a4), according to the ASAP schedule, depend on two produc-
ers in Window 1. Since the capacity c�1� of the resource associated
with Window 1 is only 1, this delays the beginning of execution for
activities in Window 2, causing its last consumer to be scheduled

3As discussed in the sequel, we will initially set all worst case propagated delays
to 0.

Figure 4: Window dependencies and propagated delays.

on Step 4. Now, since this exceeds s�1��λ�1� � 3, the dependency
of Window 2 on Window 1 causes the worst case propagated delay
for Window 2 to become 1.

We note that it is possible to obtain more aggressive estimates
for propagated delays, however we have found the above to be ad-
equate so far.

��� Construction of the Window Dependency Graph

Let W � f1� � � �nAg be an index set for the aggregated windows as-
sociated with the problem. We define a window dependency graph
(WDG), G�W�D�, with nA nodes representing aggregated windows,
and including directed arc’s D�W �W between nodes (aggregate
windows) that depend on one another. That is, �i� j� �D if window
j depends on window i. However, to avoid cycles, not all depen-
dencies, i.e., arcs, are included in the graph. The following rule is
used to prune edges.

Pruning Rule: Prune �i� j� � D if no producer activity can be ex-
ecuted on the first step s�i� and/or last step of window i or if
no consumer activity can be executed on the first step s� j� of
window j. That is, either s�i��minakfsI�k�jak �Pi� jg and/or
f �i��maxakf f I�k�jak �Pi� jg and/or s� j��minakfsI�k�jak �

Ci� jg� where sI�k� is the scheduling step for activity ak � A
in the ASAP schedule.

The intuition underlying this rule is that the dependency (arc �i� j�)
should only be retained if, among all aggregate windows contain-
ing the same set of producer activities Pi� j, window i has the largest
lower limit on its scheduling range, i.e., s�i�. Indeed, dependen-
cies from aggregate windows starting earlier can be easily shown
to result in the same or smaller worst case propagated delays, thus
removing such dependencies will not compromise our lower bound
on latency. Note, however, that our rule may actually remove more
dependencies than those associated with aggregate windows in-
cluding activities Pi� j but starting the latest. Indeed, in some cases
an aggregate window including a specific set of producer activities
Pi� j may not include a producer activity that can be executed on the
first step of the window. A similar intuition accompanies the case
in looking at consumers in the dependent window j. While in some

4

cases this pruning may weaken the resulting bounds, it allows us to
easily establish that the pruned WDG is acyclic, see the appendix
for a proof. This in turn significantly reduces the complexity of our
proposed algorithm.

Theorem 3.1 A window dependency graph G�W�D� pruned ac-
cording to the above rule is acyclic.

��	 Algorithm to compute propagated delays

Given an acyclic window dependency graph G�W�D�, we next dis-
cuss how to compute the worst case propagated delay for all win-
dows in the graph. We first set δ� j� � 0 for all j �W� Then, starting
from the source nodes (aggregated windows) in the window depen-
dency graph, we iteratively determine the worst case propagated
delay of each node j, δ� j�, not yet considered, but whose parent
nodes’ worst case propagated delays are known, via

�i s.t. �i� j� �D : propagated-delay�i� j��

The propagated delay for each source node is assumed to be 0 upon
initialization.

Theorem 3.2 This iterative algorithm returns a set of propagation
delays fδ�i�ji �Wg for windows in the graph.

The proof of this theorem follows directly from Lemma 3.2.
The final lower bound, L�, on the execution latency of the DFG,

is given by the worst case lower bound over all windows in the
WDG, i.e.,

L� � max
i
fs�i��λ�i��δ�i�ji �Wg�

The complexity analysis of the algorithm for computing propagated
delays and L� can be found in the next section.

��
 Complexity analysis

In what follows we briefly discuss the asymptotic time complexity
of the algorithms for creating the WDG and computing L� for the
WDG. The set of individual windows is created using ASAP and
ALAP scheduling algorithms, and thus takes O�jAj� jEj�. Since
the maximum number of edges incident on each activity (i.e., num-
ber of operands) is two, jEj � 2 � jAj, and thus the generation of
individual windows takes O�jAj��

Next we discuss the generation of aggregate windows.4 Note
that the maximum number of aggregate windows per resource is
given by ∑L�1

i�0 �L� i��i� 1� 	 L3. Indeed for each resource, one
can have at most L windows of size 1, L� 1 windows of size 2,
down to 1 window of size L. The simple algorithm currently used
to create the aggregate windows is as follows. For each resource,
we create a list of L3 empty candidate aggregated windows, with
corresponding ranges, ordered by start time. Each candidate ag-
gregate window has a set of steps, from start step s to finish step
f . Each such step is initialized as unused, and a window’s local
counter of unused steps is initialized to the number of steps con-
tained in its range. In the first phase of the algorithm, for each
individual window, we search for all candidate aggregate windows
(defined for the corresponding resource) that contain its scheduling
range. Whenever one is found, the individual window’s activity is
inserted in the aggregate window, and all steps that the individual

4For most practical cases, we expect that the intermediate step of generating basic
windows will pay off, i.e., improve the overall efficiency of the algorithm, since it may
significantly reduce the number of windows that need to be individually considered
in the expensive merging step that follows. However, for the purpose of determining
asymptotic complexity since one would still need to consider jAj basic windows, the
basic window generation step will be omitted in this analysis.

window shares with the candidate aggregate window that are cur-
rently unused are marked as used. The counter of unused layers for
the candidate aggregate window is then updated. This first phase
takes O�jAjL4�, since each of the O�jAj� individual windows needs
to iterate though the O�L3� candidate aggregate windows of its cor-
responding resource, and update unused layers at a cost of O�L��
In the second phase of the algorithm, each resulting candidate ag-
gregate window is validated, by checking if its counter of unused
layers is zero. If not, the candidate aggregate window is invalid,
and is deleted from the ordered list of aggregate windows for the
resource. If the candidate aggregate window is valid, we perform
the ASAP schedule for the induced subgraph associated with the
activities in the window, and compute the local delay λ�i� of the
window - the complexity of this step is O�jAj�� The second phase
of the algorithm has a complexity of O�jRjL3jAj� since O�jRjL3�
tentative aggregate windows must be considered.5 The final num-
ber of aggregate windows is O�jRjL3��

Next we consider the algorithm for creating the pruned WDG’s
edges, and simultaneously computing the propagated delays be-
tween all aggregate windows. The worst case propagated delays
for each window are first set to 0. We then sequentially consider
the aggregate windows of all resources, ordered by start time. Sup-
pose aggregate window j is selected for consideration, we shall
call it the pivot. Next we select a candidate producer window
for the pivot. (Due to the pruning rule, only aggregate windows
whose start time is less than that of the pivot can be selected.) Next
one verifies if the pruning condition holds (which takes O�jAj2�)
in which case the edge is not constructed between the aggregated
windows and the next candidate producer window is considered.
Otherwise, an edge �i� j� is created, and the algorithm for com-
puting the pairwise propagated delay ∆�i� j� described in x3.4, is
executed, and the value is associated with edge �i� j�.6 If the new
pairwise propagated delay is greater than the current worst case
propagated delay δ� j� of the pivot window, the value is updated.
The algorithm to update worst case propagated delay of the pivot
for a given candidate producer takes O�jAj2�� Thus the computa-
tion of the bound (and simultaneous generation of the edges in the
WDG), is done by applying the previous step to pairs of aggregate
windows, and takes O�jRj2L6jAj2�. In summary, the generation of
the WDG and the computation of L� have an asymptotic complex-
ity of O�jRj2L6jAj2�.

For VLIW datapaths with multiple functional units (intended to
explore parallelism in the DFG), L is typically much smaller than
jAj� Moreover, the number of aggregated windows that needs to be
considered in the various steps of the algorithm has in practice been
(and is expected to be) much smaller than jRjL3.7 Thus, we expect
the above theoretical asymptotic complexity to be very pessimistic
for the class of problems of interest. For all the DSP benchmarks
considered in x5, the total execution time has never exceeded 0�5
sec on an UltraSparc 1.

� Window dependency graph and tradeo� exploration

In this section we discuss a simple binding heuristic which takes ad-
vantage of the window dependency graph (WDG) to explore trade-
offs between 1) reducing data transfers and 2) avoiding operation
serialization, see x1. The experimental results in x5 exhibit the ef-
fectiveness of this heuristic based on the WDG, which in turn could
be used by an iterative improvement binding algorithm.

5Note that this second step of the generation of aggregate windows can (and should)
be actually integrated in the final phase of the algorithm, but for clarity of the explana-
tion, we consider it here independently.

6Note that the computation of ∆�i� j� for the WDG edges is truly not required for
computing L� . However, these values are informative if one wants to reason about
binding modifications likely to improve latency (see discussion on x4 and x5).

7In practice, it has been consistently sub-quadratic in L.

5

As a starting point in the generation of our examples, we con-
sidered an initial binding that reduced moves between operations
on the longest paths of the DFG. The idea is to bind activities on
those paths such that their shared data objects remain on register
files shared by the assigned functional units. The remaining bind-
ing of operations to functional units was performed to minimize
serialization of concurrent operations. This process was done man-
ually.

Next, based on the window dependency graph, we determined
our lower bound L� on latency. If L� � L, and L is in fact equal
to the last step of the ASAP schedule for G�A�E� (see x3), then
the current binding is optimal8. Otherwise it may be desirable to
modify the functional unit assignment to try to lower execution la-
tency. Recall that each aggregate window i has a scheduling range
�s�i�� f �i��, a local delay λ�i�, and a worst case propagated delay
δ�i� such that s�i�� λ�i�� δ�i� is a lower bound on the last step
activities in the window will be scheduled. We shall refer to the
difference between this bound and f �i� as the window’s excess de-
lay. The key insight in selecting which activity bindings to modify
is to 1) find windows with high positive excess delays that 2) lie
on “critical paths” of the WDG. Recall that a window represents a
set of activities bound to a common resource that have to be (se-
rially) executed over a given scheduling range. A window with a
large positive excess delay is one for which serialization due to re-
source constraints and/or pairwise propagated delays from parent
windows, ∆, lead to delays beyond this scheduling range. Thus,
in order to reduce latency it may be worthwhile to reconsider the
binding of activities in such windows. Note, however, that not all
such windows are problematic. Indeed, only windows on the “crit-
ical paths” of the WDG, i.e., those leading to an increased overall
latency, either directly or through a sequence of pairwise propa-
gated delays, need to be considered. We identify “critical paths”
on the WDG by backtracking from sink nodes (windows) in the
WDG whose final lower bound on execution exceeds the global
lower bound L, and traverse the graph up to parent windows with
non-zero excess delays.

Still, not all windows with positive excess delay, and lying on
the WDG’s critical paths, would be candidates for iterative im-
provement on binding. Two simple rules can be used to determine
windows for which a given binding is likely to be optimal. First,
a window with no additional delays propagated from its producer
windows and with an excess delay � 1 need not have the bind-
ing of its activities reconsidered. Indeed, as shown in the example
in Fig.2, the benefits of removing serialization in such cases will
be canceled by the additional delay incurred by required move op-
erations. Similarly, a window with a non-zero propagated delay
from its producer windows and an excess delay � 2 need not have
the binding of its activities reconsidered. It follows that a WDG
that only contains such windows is unlikely to have its latency im-
proved by further modifying the binding. These simple heuristic
rules proved to be effective when applied to the benchmarks in x5.

This concludes our brief qualitative discussion. As mentioned
above, the purpose of this section is not to propose an algorithm to
perform this complex trade-off exploration, but rather to show that
the information contained in the WDG can be helpful to such an
exploration process.

� Related work and benchmark examples

In the context of distributed register files, if one wants to consider
the deleterious effect of required data object moves on the latency
of a schedule, one must explicitly consider a binding of the dataflow
nodes to the functional units in the datapath. The basic problem

8Optimal at our level of abstraction, i.e., disregarding register files sizes and port
assignments.

formulated and addressed in this paper is thus different from those
considered in [6, 11], for they assume no data transfer delays. How-
ever, one can apply these techniques to the dataflow after a binding
function has been determined. Indeed, by making each functional
unit a distinct resource type with capacity 1, and the bus a resource
type with a specific capacity, these methods can also be made bind-
ing specific. Given this, one can compare the absolute quality of
our lower bound with that reported in [6, 11]. With few exceptions
[11] performs better than [6], thus we shall compare our work with
an implementation of the algorithm in [11].

Table 1 summarizes our results. Several benchmark dataflows
were bound to the datapath shown in Fig.1. Initial and improved
bindings were obtained manually based on the simple heuristics
discussed in x4. Columns 2 and 4 of the table show the mini-
mum achievable latency for centralized and for distributed register
file structures, respectively. Differences between these indicate the
crudeness of assuming a centralized register file structure when it
is in fact distributed. Starred entries are known to be optimal laten-
cies over all possible bindings, thus the improvement heuristic was
effective.

Our lower bound on latency L�, shown in column 5, was con-
sistently tight and for seven of the ten benchmarks outperformed
[11].

DFG Central. Binding Distrib. Lower Bds
RF RFs Our L� [11]

FFT Butterfly [3] 4 initial 8 8 6
imprvd. 5� 5 4

4th order Avenhous 7 initial 10 10 9
Filter [5] imprvd. 9� 9 9
4th order IIR 4 initial 9 9 8
Filter retimed [3] imprvd. 6� 6 5
Beamforming Filter 4 initial 8 8 7
(3 beams) [9] imprvd. 6� 6 5
AR Filter [2] 8 initial 15 13 14

imprvd 13 13 13

Table 1: Experimental results.

In addition, note that [6, 11] only generate bounds on the earli-
est possible execution time of individual nodes in the DFG, so, the
information on serialization (for FUs and buses) that we capture
via the WDG is not available. Since the latency of a schedule can
vary significantly for different bindings, particularly for datapaths
with distributed register files, our approach has a significant added
value, in that it can provide guidance on how to modify binding
functions to achieve lower latencies.

Code generation for VLIW ASIPs has been addressed exten-
sively in the literature, see e.g., [8, 7]. Although discussing this
work is beyond the scope of this paper, to further illustrate the rel-
evance of the trade-off information captured by the WDG, we will
briefly discuss the AVIV code generator[4]. This work specifically
considers the same trade-offs, while deriving a functional unit bind-
ing/assignment for a given expression tree.

As discussed below, AVIV greedily prunes binding alternatives
based on a local cost function. Given an expression tree, an ASAP
schedule of the expression tree is performed, and nodes (opera-
tions) on the resulting levels are sequentially considered (in any
order) from the lowest to the highest level. As the operations are
considered, a search tree is constructed, representing possible bind-
ing alternatives. Heuristically inferior alternatives are immediately
pruned - based on a local cost function. The cost associated with
binding an operation to a functional unit is the sum of 1) the num-
ber of required data transfers given the bindings made for the an-
cestor nodes of that particular path of the decision tree, and 2) the
number of operations at the current level that are assigned to the
same functional unit, again considering the bindings for the ances-
tor nodes. While this greedy policy would execute faster than our

6

lower bound algorithm, it makes decisions strictly based on local
information. Thus, for example, it does not discriminate among
operations that have different mobility (i.e., scheduling windows),
which can compromise the overall quality of the binding. An it-
erative improvement algorithm using the WDG can instead create
binding alternatives based on a more “global” view of such trade-
offs, at the expense of an increase in runtime. This concludes our
discussion of the relevance to code generation of the tradeoffs ex-
plicitly modeled in our approach.

	 Conclusion

We have proposed an approach to generating lower bounds on ex-
ecution latency for DFGs on datapaths typical of VLIW ASIPs for
a given functional unit binding/assignment. While the bound was
found to be competitive with state-of-the-art approaches, its key
advantage lies in capturing delay penalties due to operation serial-
ization and/or data moves among distributed register files. In order
to estimate such delays, the scheduling problem is relaxed (decom-
posed) into a number of simpler scheduling sub-problems, jointly
represented using the window dependency graph model. Our re-
sults show that the relaxed, less computationally expensive, ver-
sion of the scheduling problem results in tight bounds. Moreover,
it can provide valuable information/guidance to heuristic binding
algorithms for “clustered” VLIW ASIP datapaths. Functional unit
assignment/binding is a key step of the difficult code generation
problem for VLIW ASIPs. We are currently working on devel-
oping binding algorithms, supported by the window dependency
graph mode, to address this problem.

References

[1] G. de Micheli. Synthesis and Optimization of Digital Ciruits.
McGraw-Hill, Inc, 1994.

[2] R. Jain et. al. Experience with the Adam synthesis system. In
Proc. of DAC, pages 56–62, 1989.

[3] V. Zivojnovic et. al. DSPstone: A DSP oriented benchmark-
ing methodology. In Proc. of ICSPAT’94, Oct. 1994.

[4] S. Hanno and S. Devadas. Instruction selection, resource al-
location and scheduling in the AVIV retargetable code gener-
ator. In Proc. of the 35th DAC, pages 510–15, June 1998.

[5] E. Ifeachor and B. Jervis. Digital signal processing: A prac-
tical approach. Addison-Wesley, 1993.

[6] M. Langevin and E. Cerny. A recursive technique for comput-
ing lower-bound performance of schedules. ACM Trans. on
Design Automation of Electronic Systems, 1(4):443–56, 1996.

[7] C. Liem. Retargetable compilers for embedded core proces-
sors. Kluwer Academic Publishers, 1997.

[8] P. Marwedel and Gert Goossens, editors. Code Generation for
Embedded Processors. Kluwer Academic Publishers, 1995.

[9] R. Mucci. A comparison of efficient beamforming algorithms.
IEEE Trans. on Signal Processing, 32(3):548–58, 1984.

[10] M. Rim and R. Jain. Lower bound performance estimation
for the high-level synthesis scheduling problem. IEEE Trans.
on CAD of ICs and Systems, 13(4):451–58, 1994.

[11] G. Tiruvuri and M. Chung. Estimation of lower bounds in
scheduling algorithms for high-level synthesis. ACM Trans.
on DAES (TODAES), 3(2):162–80, 1998.

A Proof of Lemma ���

The main idea underlying this lemma is that any relaxation of con-
straints, e.g., precedence or resource constraints, on the original re-
source constrained scheduling problem can only reduce the starting
time of an activity in the corresponding optimal schedule. Hence,
consider the subgraph G�A��E �� induced by the set of activities A�,
i.e., including only arcs in the original graph that are between activ-
ities in A�. This subgraph corresponds to a relaxation of all prece-
dence constraints external to the set of activities A�. Next we per-
form an ASAP scheduling for the DFG G�A��E �� and let l � 1� � � �m
denote the steps in this schedule, and nl denote the number of ac-
tivities scheduled on step l. Since these activities are to be executed
on a resource r with capacity c�r� the above ASAP schedule may
not be feasible. To obtain a lower bound on necessary delay penal-
ties due to the resource constraints we consider a new hypothetical
resource constrained scheduling problem which further relaxes in-
ternal precedence constraints among the activities in A�. We assume
that once an activity on step l of the subgraph’s ASAP schedule is
executed all nl�1 activities on step l � 1 can be scheduled on the
subsequent step.

This new hypothetical problem can be solved directly using a
greedy algorithm that schedules activities as soon as possible. Let
xl denote the number of activities that are eligible for execution
prior to step l but, due to capacity constraints, will need to be sched-
uled on step l or later. Thus on step l the total number of activities
eligible for execution is nl � xl � however only c�r� can be sched-
uled, thus xl�1 (see Eq. 1) activities will be postponed to the next
step. Naturally since the schedule starts on step 1, x0 � 0. Note that
which activities are are actually scheduled on a given step is irrele-
vant, since we can always assume that at least one actually belongs
to step l of the ASAP schedule, and thus all activities on the next
step will become eligible for execution. The iterative computation
in (1) finishes on step m where xm�1 corresponds to the number of
activities that had to be postponed, if any, beyond the last step m of
the ASAP schedule due to resource constraints.

xl�1 � maxfnl � xl � c�r��0g� l � 1� � � �m� (1)

bound�A��r� � d
xm�1

c�r�
e�m�1� (2)

From there on we can compute the additional number scheduling
steps required to execute the postponed activities, if any, i.e., dxm�1

c�r� e

Finally, to obtain our bound we subtract 1 since the bound is on the
number of additional steps beyond the first one, that are required
to execute the activities.

B Proof of Lemma ���

The goal of propagated-delay is to find a lower bound on the last
step on which activities in Window 2 will be executed.

We first consider lower bounds on the time the last producer
activity in Window 1 is scheduled. If Aa

1 � P1�2 then, by definition
of the local delay and worst case propagated delay of Window 1,
the last activity must be scheduled on or after step

last-producer-step � f �1��λ�1��δ�1��

If Aa
1 �� P1�2 then, using the result in Lemma 3.1, the last producer

must be scheduled on or after step

last-producer-step � start-step�bound�P1�2�r�1��

where start-step � minakfsI�k�jak � P1�2g corresponds to the ear-
liest possible step on which an activity in P1�2 may be scheduled.
Now, since at least one consumer activity in Window 2 depends

7

on the last producer activity, the last consumer step must strictly
exceed the last-producer-step computed above. In fact there are at
least

num-consumers-for-last-producer � min
b
fjCbj j b � P1�2g

consumers depending on the last producer. Thus we set the “delay”
variable equal to

delay � dnum-consumers-for-last-producer�c�r�2��e�

so the last consumer step must exceed the last-producer-step � de-
lay.

Next we find a lower bound for the last step on which an ac-
tivity in the dependent Window 2 will be executed. Let G�A2�E ��
be the subgraph of G�A�E� which includes the activities A2 and
all the edges E� � E among these activities. Suppose we perform
an ASAP schedule for this subgraph, and let L2 denote the set of
activities on the first step of that schedule. Also for any activ-
ity a � A2, let Pa denote its producer activities in Window 1, i.e.,
Pa � fb � A1j�b�a� � Eg�

We consider two cases. We first test if c�r�1�� � 1 and �a �
L2� jPaj � 2� Since every activity in L2 depends on two producer
activities in Window 1 and the capacity of the resource associated
with the producer window is 1, no activity in the dependent Win-
dow 2 can begin execution prior to step s�1�� 2 or, of course, its
own starting step s�2�. Thus the following lower bound follows
immediately from Lemma 3.1:

last-consumer-step � maxfs�1��2�s�2�g�λ�2��

Note that due to the pruning rule discussed in x3.5, s�1��1 � s�2�
thus when �a � L2� jPaj
 1 the the analogous bound to the above
would degenerate to s�2��λ�2�� i.e., would leave the current prop-
agated delay of the window unchanged.

If the condition for the previous case is untrue then we make
the optimistic assumption that activities in Window 2 can begin
execution on the first step of the window s�2�, even though there
may be dependencies on Window 1. This gives the following bound

last-consumer-step � s�2��λ�2��δ�2��

Thus we have two lower bounds for the step on which the last ac-
tivity in the dependent window is executed.

Finally, we take the maximum of these two bounds, i.e.,

last-consumer-step �

� maxflast-producer-step�delay� last-consumer-stepg�

The pairwise propagated delay associated with Window 2’s depen-
dency on Window 1 is then given by

∆�1�2� � last-consumer-step� �s�2��λ�2���

The worst case propagated delay associated with Window 2, δ�2�,
is then updated by taking the worst of the old propagated delay, and
the just computed pairwise propagated delay

δ�2� � maxfδ�2��∆�1�2�g�

C Proof of Theorem ���

We shall prove the theorem by contradiction. Suppose there exists
a cycle in the pruned window dependency graph G�W�D�. With-
out loss of generality suppose the cycle visits nodes (windows)
1�2�3� �� j and then back to 1� Given our pruning rule, aggregate
Window 1 must have a producer activity, say a1 � P1�2, that can

execute on the last step f �1� of the window’s scheduling range.
Thus f �1� would correspond to position (step) of a1 in the ALAP
schedule used to define that activity’s individual window. Since
Window 2 contains at least one activity b2 that depends on a1, in
the same ALAP schedule b2 must be scheduled on a step beyond
f �1�� Thus the final step f �2� in the scheduling range of Window
2 must satisfy f �2�
 f �1� � 1� Using this same argument until
we reach Window j we can show that f � j�
 f �1�� j� 1� Since
Window 1 also depends on Window j, the pruning rule guarantees
that at least one producer activity aj � Pj�1 in Window j can ex-
ecute on step f � j�� Now, since there exists an activity in Window
1 that depends on aj, Window 1’s last step f �1� must be at least
f � j��1. Clearly this is a contradiction since this would imply that
f �1�
 f � j��1
 f �1�� j.

8

